当前位置:松语文学 > 穿越小说 >复杂性中的思维物质最新章节 > 复杂性中的思维物质TXT下载
错误举报

正文 第26节

  数学上的根本性问题是,在此博奕中存在着平衡点。如果完全没有合作,就以如下方式定义两位游戏人的可能行动的平衡点。一个事件a1,a2是游戏的平衡点,如果游戏人1的所有行动a1的收益值u1a1,a2大于或等于u1a1,a2,以及如果游戏人2的所有行动a2的收益值u2a1,a2大于或等于u2a1,a2。

  假定游戏人2选取了行动aa,而游戏人1试图使收益最大化,那么他就可以选取行动a2;反之亦然。平衡点是稳定的,如果游戏人知道他或她的对手也处于平衡点并且没有理由要改变其行为。显然,这种平衡定义没有考虑任何动力学方面。但是,实际的社会或经济行为却是由时间中的复杂动力学所确定的。交易循环是众所周知的经济动力学的例子。于是就提出了问题:这些动力学是否受到平衡态的吸引,以及这些平衡态是否是稳定的。一般来说,博奕论并不考虑“蝴蝶效应”,即不考虑小的行为失误有时会引起总体的危机甚至引起混沌。

  冯诺意曼和摩根斯腾的博奕论并不完全拘泥于线性数理经济学的传统,它还发展起来经济福利理论的思想。一个理性的社会被假定为选取了帕雷托优化paret一-一ptil的利益分配。如果没有对于其他个体福利的减少就不可能增加这一个体的福利,这种利益的分配被称为是帕雷托优化的。满足这种弱帕雷托优化福利条件仍然是不充分的,还必须考虑到潜在的联合。博奕论中的合作解理论,主要是追随了福利经济学c交际手段,以及往往惯于社交的自私政治家的思想。数学上,福利经济学的政治和社会框架的公正c无偏见以及平等竞争等概念的确定,都被归结为某种对称性原理。

  博奕论是一种精确的数学理论,它在经济学中的应用往往被估价过高了。其局限性是它对社会作了典型的线性假设。然而,博奕论是一项了不起的数学发明,它主要是由冯诺意曼提出来的。值得注意的是,在本书所涉及的本世纪几乎所有科学领域的发展中,约翰冯诺意曼都是一位中心人物。他曾致力于程序控制的计算机c自动机理论c量子力学和博奕论的发展。而且,他还对自然科学和社会科学中的跨学科数学模型深感兴趣。所有这些辉煌的发展都主要是由线性原理支配着。但是,冯诺意曼还是最先认识到自复制和自组织的重要性的科学家之一。他的元胞自动机理论就是一个著名的例子。

  63复杂经济系统c混沌和自组织

  从方法论的观点来看,主流经济学往往受到线性数学c经典力学c平衡态热力学模型的启发,有时也受到达尔文进化论的启发。古典经济模型中已经假设了一种理性的经济人,理性经济人通过成本最小化c利益最大化来追求收益最大化。这些理性的角色被假定通过在市场上交换商品而发生相互作用,市场是通过一定的价格机制来实现需求和供给之间的经济平衡的。

  要描述经济的动力学,就需要有包含许多经济量也许来自数千个部门和数百万角色的演化方程。经济学如同其他领域一样,一切事物都依赖于其他事物,为了尽量地模拟经济复杂性,这种方程就将是耦合的c非线性的。但是,甚至是完全确定论的模型也会产生出高度不规则的行为,这样的行为是不可能作出长期预测的。经济学如同气象学一样有同样的缺陷。

  在发现数学混沌和蝴蝶效应之前,人们相信有可能精确地作出长期的天气预报。作为一名计算机的先驱,约翰冯诺意曼认为,拥有了充分多的关于全球气象的数据,并有了超级计算机,就可以对于长期的c大范围的天气作出精确预报。在数学上他并没有错,因为在线性数学框架中,他如同经典的天文学家一样地正确。但是,流体和天气的实际长期行为惊人地不同于这些模型。

  人们怎样来处理天气和经济学中的复杂性呢气象学中,爱德沃洛仑兹已经提出了一种非线性动力学模型,其中由于内在的“外在的”扰动就会产生出混沌行为对照24节。类似地,解释经济演化的复杂性就有两种可能的方式。主流方式是假定线性的模型,其中作出某些预先的特设c难以解释的外在冲击。而非线性方式放弃了过于简化的预设有外在冲击的线性假说,并力图通过其内在的非线性动力学来解释实际上的经济复杂性。在一些情况下,非线性作用非常弱,线性近似并不造成根本性错误。

  在经济学史上,20世纪30年代的经济大萧条引起了试图从理论上解释经济的不规则性。但是,那些模型例如卡耐基和汉森萨缪尔森模型都是线性的,难以解释振荡现象的形成。因此,经济学家们就假定,外部的冲击引起了所观察到的振荡。假如那时经济学家对于数学的发展更熟悉一些,他们就会早些了解到非线性的数学模型会导致循环限制,从而得出解答。

  经济学家们起初只知道不动点吸引子的稳定平衡。彭加勒把平衡态推广到包括以极限环形式进行的平衡运动。但是,对于像洛仑兹模型图221中的混沌吸引子,既没有不动点,也没有不变运动,而是一种永不重复的运动。然而,它也是一种有边界的运动,一种非游荡集合,将一定的动力学系统吸引到某个动态平衡的终态。

  历史上,20世纪的经济以其增长过程中发生着引人瞩目的崩溃中断为特征。例如,20世纪30年代大萧条和70年代石油危机。对于增长的结构,要特别关注创新和技术进步。成功创新的扩张,在经验上已经由逻辑斯蒂函数很好地表示出来,本书中在24节已经引入了这一函数。递归的表示中可以把整数t看作时间项,增长因子ac0。起初,人们对于创新是全然不熟悉的。然后,随着它被人们接受,它就达到了它的最大扩张速率。再后,随着创新方式完全地结合进经济中,对它的吸收过程就慢慢地减速了。

  所形成的曲线示意在图222中。对于a3,我们获得了某个不动点吸引子,这示意在图222a中。对于更大的a,结果形成了一种振荡图222b和图224b,然后是一种混饨运动图222c和图224c。对于ac3,周期数随着a的增加而成倍增加图223a,最后它完全变成了混沌图220b。

  创新和经济产出之间的相关如图66的模型所示。最初的输出q被看作是平衡的,随着增长速率k的增加,输出也在逐渐增加。随着创新到达饱和状态,k也减少到零,输出q跌落到最初的水平。于是,创新刺激出某种繁荣,但也就引出了随后的衰退。创新可以是节省劳动力的。如果每输出单位的劳动输入降低20,就会引起失业。

  人们假定新思想的增长是指数式的,像舒伯特那样的经济学家主张,在一次创新冲动的尾声就将开始一轮新的创新冲动。然后,如果大致以每年4的速度发生经济系统连续地起作用和技术概念连续地生长,那么就会激起新的一轮繁荣和新的衰退,如此等等。对于经济循环理论,创新是至关重要的,因为在一次萧条中是没有任何的新投资基础的,而新的投资又是引出新的扩张所必需的。

  一些新的思想平稳地产生出来。当足够多的思想积累起来以后,就会引进一组新的创新。它们最初的发展是缓慢的,然后随着方法的改进而得以加速。逻辑式发展标志了这种典型的创新轨迹。引入一种创新必须要有某种超前投资。投资刺激了需求。增长的需求促进了创新的传播。于是,随着所有的创新都已经被充分发掘,减速过程就将导致零增长。

  熊彼特把这种现象称作创新“游泳”。在他的三循环模型中,第一个短循环相应于资本循环,创新在此不起作用。下一个较长循环相应于创新。熊彼特承认历史统计学的显著性,并把长周期波动的证据与诸如蒸汽机c炼钢c铁路c轮船和电力这些最重要的创新联系起来,注意到它们完全地结合进经济中需要30100年。

  一般地,他描述了以“集群”形式发生的技术进步引起的经济进化,并在逻辑斯蒂框架中来解释。一次技术集群被假定为以循环方式把一种平衡态转移为一种新的不动点。所形成的新的平衡,其特征是更高的真实工资c更高的消费和产出。但是,舒伯特的分析忽略了一个根本性问题:有效的需求决定着产出。

  从历史上看,20世纪30年代的大萧条促成了提出经济的商业循环模型。不过,最初的模型例如汉森萨缪尔森的模型和郎伯格米兹勒模型都是线性的,因而也就需要外在的冲击来解释其不规则性。标准的经济方法论为这种传统进行辩解,尽管循环分析在数学上发现了奇怪吸引子以后就已经成为可能。在非线性系统框架中,重新表述关于20世纪30年代的大萧条的传统线性模型并不困难。

  米兹勒模型是由两个演化方程来决定的。在第一个方程中,产出的变化率q正比于实际资本s与所希望的资本s之间的差。所希望的资本正比于产出。第二个方程中涉及资本的变化率s,其产出q小于需求。需求正比于产出。由这两个演化方程决定的动力学复杂系统,将产生出简单的其振幅不断增加的谐运动。

  如果以某种非线性方式将这个系统扩展,就会导致另一种不同的行为。第三个方程中考虑到净公共剩余和赤字的反常行为。目的是要产生出有若干年周期的循环。运用所谓的茹斯勒带,提出了一种数学模型。人们得到了一条莫比乌斯带,它是自上而下翻转后只给出一面的带子图67a。追随一条轨迹,由外圈扩展到右上方。然后,它折叠起来,并随着向下运动而收缩为一个内圈,如此等等。图67a给出了一个两维的投映,显示了这两个循环。轨线倾向于聚集在其间的空的空间。如果将此模拟继续下去,这些带子就变得越来越稠密。

  图67a是一个简单而著名的混沌“奇怪”吸引子的例子。尽管其中每一轨迹都是精确地由演化方程所决定的,但它却是难以长期计算和预测的。在蝴蝶效应的意义上,起始条件的微小偏离,将引起轨迹途径的巨大变化。图67b示意了态空间中一条为期15年的输出轨迹,对此已在计算机实验中选择一些参数进行了模拟。图67c示意了作为相应的时间系列的发展。

  这种高度飘忽不定的行为完全是由内在系统产生出来的,没有任何的外在冲击。在经济学中,时间系列的不规则性通常是用外在冲击来解释的。但是,它们仅仅是武断的预先假设,因此是可以解释任何事物的。从方法论的观点看,其中有混沌吸引子的混沌内在模型表现得更令人满意。然而,内在的非线性模型与带有外在冲击的线性模型都必须严肃地取自经济学,并在经济学中受到检验。

  显然,一个经济系统包含了许多相互关联的和相互的部分,既有内在动力学也有外在影响力。一个国家的经济越来越受到世界经济运动的作用。在一个经济系统内,也有具有特定动力学的多种市场。它们受到循环的影响,例如,每年的太阳循环就决定着农业c旅游业或燃料市场的状况。因此,铁业循环和建筑循环也都是人们熟知的经济例子。因此,内在非线性并受外力冲击波的系统才是现实的经济模型。受扰动的混沌吸引子或一种超混沌,给人留下了深刻印象。正是经济事件具有飘忽不定的特征,给经济人员带来了严重的困难,他们不得不面对不可预见的未来而进行决策。

  在23节中,我们已经看到,自组织的复杂系统可以是保守的或是耗散的。在图214a,b中示意了它们的不同类型的吸引子。一些为人们熟悉的自然科学中的保守的或耗散的模型都已经运用于经济领域。1967年,哥德温提出一种保守动力学模型,以使得19世纪的阶级斗争思想精确化。他考虑了一种由工人和资本家所组成的经济系统。工人将其全部收入都用于消费,而资本家则将其全部收入都储蓄起来。哥德温运用的是作了某些修订的洛特卡和沃尔特拉的捕食者被捕食者模型,那个模型已在34节中作了描述。

  哥德温的保守模型支持了这样的观点:资本主义的经济将处于不断的振荡之中。因此,轨迹描述了封闭轨道,如图311b所示。哥德温的模型受到了批评,批评者认为它只是表面上的,因为该模型并未直接涉及资本家和工人的职务收入份额或他们群体的大小。但是,主要是由于它的保守特征,使得哥德温的模型看来在经济上是不现实的。该模型把互不相干的一组假设放在一起,而假设之间的相互影响没有得到反映。

  因此,加入“经济摩擦”假设,就使这个模型更为现实了。在生物学中,耗散的洛特卡沃尔特拉模型已示意在图311c中,其中有一个吸引子。一个耗散系统总是具有吸引子或排斥子,其形式包括不动点c极限环或奇怪吸引子。由于耗散系统具有不可逆的时间进化,任何种类的回溯预测都是排除在外的。

  现实中,人们不可能将一个动力学系统与其他动力学系统割裂开来考虑。因此,在22节中,我们研究了耦合的吸引系统,例如两个时钟图211a,b。组合系统的态空间由一个环形圆纹曲面代表图211c,d。整个系统的动力学,由环形圆纹曲面上的轨迹和向量场的相图来表示。

  一个耦合振荡系统的经济模型,可以由国际贸易来提供。设想一个简化了的只有总投资和储备的单种经济的宏观经济模型,其总投资和总储备依赖于收入和利率。这个系统的动力学依赖于关于收入的演化方程,收入由市场上对物品的过度需求来调节,第二个演化方程是关于利率的方程。这些方程以模型中产生出内在振荡的方式构成了一个非线性振荡子。

  3种经济的相互作用,例如,可以用3个的二维极限环来加以描述。如果这3种经济都处于振荡中,该系统的总运动就构成了一种三维环形圆纹曲面的运动。非线性振荡子的耦合可以理解为对三维环形圆纹曲面上的自主经济运动的扰动。这种耦合程序已经应用到了几种经济实例中,诸如国际贸易模型c商业循环模型和市场。

  当允许自组织的经济系统受到政治干预的影响时,就出现了至关重要的实际政策问题。在某些情况下,市场是不可能按照福利标准来发展的。如果让经济自由放任,它就可能出现涨落波动的特征。如果不考虑经济增长的复杂性和非线性,政策措施可以对这样的倾向产生相反的效应。

  对于经济突变带来的巨大社会和政治后果,已经在凯恩斯主义和新凯恩斯主义的框架中讨论过若干种政策措施。例如,当代的财政政策可以被看作一种动力学控制。它应该可以减少经济涨落的幅度。但是,战后的经验已经表明,希望把涨落减少到零是不可能的,也不可能保持就业率不变。而且,一项好的政策总是需要相当的时间来收集数据c分析结果并提出相应的立法和行政措施。结果是,任何政策当它起作用时可能就已经过时了。因此,在复杂的非线性的经济世界中,一项政策措施可能会是完全无用的。

  例如,当假定的经济动力学及其政策干预的时间途径过于简单时,凯恩斯的收入政策就可能是无效的。在复杂系统的框架中,经济政策措施可以被解释为对于振荡系统施加紧急的外部作用力。因此,它不可能排除掉经济系统出现混沌现象。在物理学中,受迫振荡是人们所熟悉的。例如,如果一个像钟摆那样的动力学系统图25处于振荡中,并且受到外力的周期性影响,那么,由于振幅不断增加c振荡总体衰减以及完全的无规则性,其结果就可能是不可预见的。

  从古典经济学到现在,商业循环理论的目标一直是建立起具有规则涨落的经济系统的动力学。按照线性力学的观点,实际的商业循环可以用规则系统来建模,对其可以再加上随机的外部冲击,而这种冲击又必须或多或少用适当的经济学假设来说明。当然,对于一个模型,当它的基本性质是由外部力量来决定的,这些外部力量又没有合理的经济学解释,这样的模型就是很难令人满意的。如果一个实际的系统是非线性的c混沌的,可能影响其经济动力学的外部作用力的进一步的信息也就可能是多余的。从方法论的观点看,按照奥卡姆的格言entian一nsuntltiplicandasenecessitate[无必要就不增加理论实体〕,他的著名剃刀应该用来切除这些多余的关于经济学的预先假设。

  从一个实际工作人员的观点来看,他究竟是面对一个随机的线性过程还是一个混沌的非线性过程的问题,这是一个离题的问题。这样的两种系统都使得他难以作出精确的预测。由于混沌模型敏感地依赖于起始条件,任意精确的数字计算机也不可能计算出这种系统的长期的未来演化。轨迹将指数地发散。另一方面,他却相信,面对着系统的过于复杂的行为,随机的外部冲击是可以放弃的。

  然而,具有混沌时间序列的非线性系统却并不排除局部的预见性。如果非线性系统的吸引子可以加以重构,那么数字技术就允许以足够高的精确度对系统的短期进化作出预测。短期经济预测可以是复杂系统理论在经济学中的一种有趣的应用,不过这也仍然处于其婴儿期。

  对于经济学模型来说,经济学从一开始就遇上了经验检验和确证的严重方法论问题。这与自然科学中可以进行任意多次的测量并进行实验室实验形成了鲜明的对照,经济的时间序列必须包括时间单位如天c年c季度或月份的数据。典型的标准的时间序列长度是由数百个点构成的。因此,对于经济模型的有限的可靠性就已经具有了经验的理由。当然,经验式的实验基本上是排除在外的。

  因此,关于内部经济动力学的适当知识,至少有助于建立数学模型,对其未来的发展可以用计算机实验进行模拟。如果政治家和管理者的经济和政治环境的假设得到了实现,他们就至少可以获得可能经济图景的“相图”。对于高度敏感的非线性系统的定性洞察,至少有助于防止反应过度

  松语文学免费小说阅读_www.16sy.com