正文 第28节
,方程描述了局域点的人口变化以及这些点提供的就业的演化。局域的人口和局域的就业能力由作为正反馈的城市放大作用连接起来。就业的集中提供了客观条件和公共基础设施,它们反过来又引起了正反馈,同时,居民和投资者又在争夺提供负反馈的中心空间。
计算机作出的图611a-e示意了一个区域的人口分布的演化,该区域起初没有局域中心之间的相互作用。城市化过程表现为局域吸引子变化的格变。图611b处于时间t=12单位,结构开始围绕5个主要中心发展。图611c中,最大中心的核心部分开始达到极大值。图611d示意t=34,基本结构本质上是稳定的。两个中心已经经历了中心部分的衰退。在图611e中,基本的模式是稳定的。衰退c中心化和非中心化都是复杂的非线性动力学引起的。
图611a-e形成了城市系统的总体演化的加速运动图像。每一幅图像是一特定时间的总动力学状态的一幅相图。当然,这种模型是进行了简化的。但是,可以给它加上更多的功能作用方面,进一步研究其精细的非线性相互作用。不过,这种模型对于探讨决策选择具有启发性,可以在计算机模拟的案例研究中进行分析。无论是局域的还是总体的变化都可以增加到该系统中。这些模拟研究,政府极为感兴趣。
一种可能的策略是,在特定的地点给予特殊的投资以干预城市结构。这种决策策略适用于城市系统中迄今为止欠发展区域的发展。例如,投资不仅仅是一种经济手段,同时也是一种文化吸引力和交通联系。有时,一项投资可以激起某种局部的蝴蝶效应,引出某种总体后果,而与设计者的善良意愿起相反的作用。这是可能的,原因在于模型的非线性限制了长期预测的可能性。
一个城市的动力学是复杂系统的实际例子。它表明,如果忽略了非线性的后果,个别人的良好愿望是不充分的,甚至是危险的。个体行为的集体效应是我们社会的特征。进行决策时,要尽可能地意识到这些集体效应。这些后果的重要性不仅仅出现在对于具体决策及其非线性的计算机模拟中,甚至并没有参与具体的计划活动的公民,也必须意识到社会中的复杂的相互关联性。
煽动人们要求有对一位可以解决所有问题的强有力的政治领袖,从民主观点来看,这不仅仅是危险的。从数学角度看,由于现代高度工业化社会的复杂性,还表明它是错误的。另一方面,我们不要把希望寄托在个别的政治家或党派的身上,也不要当我们的被夸大了的预期未能实现时,又走向完全对政治丧失信心的另一端。人类社会的特征是其中的成员具有意向性。然而,如同原子团c分子混合物c细胞有机体或生态群体一样,他们也是由非线性的复杂性规律所支配的。
社会学理论中,对于复杂性和非线性的认识论考察仍然处于初期。发展起一种能够适当处理社会问题复杂性的统计数学,可以作为通向传统社会学概念的桥梁。在复杂系统探究方式中,社会现象是由非线性方程来描述的。例如,对埃米尔德克海姆谈到的社会中的连带性,我们可以把这种概念的功能方面归因于复杂系统的非线性和集体效应。我们可以把政治决策划分为“线性的”和“非线性的”,例如,“线性的”相应于“个人的”选择,而“非线性的”相应于行政管理c大众媒介和政党这样的组织体制环境。许多公民和组织机构的行动和反应,都可以被理解为社会统计描述中的固有涨落。社会的确定论特征并不仅仅反映了分布函数的平均值,它们是按照如同主方程那样的非线性规律随时间发展的。
沃夫冈维德里希的斯图加特学派已经发展起来了这种对于社会经济动力学的研究方式。其数学建模方法是从协同学和统计物理学中推导出来的,允许对社会中的集体发展进行定量描述。协同学指出了社会中的微观水平上的个体决策与宏观水平上的动力学集体过程之间的一种关系。社会科学中在微观经济学和宏观经济学c微观社会学和宏观社会学之间作出划分是大家熟悉的传统概念。维德里希的协同学探究方式是一种对于宏观过程的几率性描述,其中包括了忽略了涨落的准确定论描述的随机涨落和偏差。
对于求解模型可以从两方面来进行考察,例如,可以用分析的方法,考察主方程或平均方程的近似解的精确性如何;也可以用数字方法或计算机辅助方法来模拟特征图景。通过在微观水平上的实际考察,确定模型的参量或借助模型模拟估计未来的发展,从而对经济系统进行分析c评价。图612中示意了用协同学探究方式对于社会动力学进行建模的方法论框架。
这种协同学的建模概念已经被运用到若干种社会科学的问题中,例如,对于政治见解的集体形成,人口统计学,群体迁移,以及区域地理。协同学概念特别适合于把若干个社会部门的相互作用整合起来,诸如经济和集体形成政治见解之间的关系,或者经济和迁移过程之间的相互作用。迁移是当今一个非常重大的问题,揭示了线性的c单因果的思维是多么的危险。只有善良的个人愿望而没有考虑到个别决策带来的非线性的效果是不够的。线性的思维和行动可能激发总体的混沌,尽管我们的局部行动是出于善良的意愿。
按照协同学探究方式,社会经济系统有两个特征水平,标志着社会中个体决策的微观方面和集体动力学过程的宏观方面。发生着涨落的几率性宏观过程,可由人类社会构型的主方程来描述。一种社会构型的每一组分,都涉及到具有特征行为矢量的亚群体。对于群体的迁移,迁入或离开某个区域的行为和决策,可以从群体的空间分布及其变化来识别。因此,模型的动力学允许我们描述群体的不同总体宏观状态之间的相变。
经验性管理数据可以用来对这个理论进行检验。该模型可以是关于一个国家中的区域迁移,它由经济和城市发展的不同所引起;它甚至也可以是在“南”和“北”之间的惊人的世界性迁移,即在穷国和高度工业化的西欧c美国之间的迁移,这是由政治和经济的不景气所推动的。动物群体的物理输运或迁移常常是不可控制的c随机的和线性的,没有成员和集合体之间的相互作用。但是,人类的迁移则是有意向性的受到收益考虑的驱动c非线性的。因为这种转移率并不线性地依赖于整体的社会构型。
两个人类群体之间的迁移相互作用可能引起若干种协同学宏观现象,比如形成稳定的混合体,形成两个的稳定聚居群体,或者保持着不休止的迁移过程。在迁移动力学的数字模拟和相图中,协同学宏观现象可以通过相应的吸引子识别出来。图613a,b示意了两个群体的均匀混合,两者的聚集或分离的倾向都比较弱。图613a是平均方程的相图,其中有一个稳定的平衡点。图613b示意了主方程的稳恒解以及具极大值的几率分布。图614a,b示意了两个稳定的聚居群体的形成,两群体间显示出弱的聚集倾向和强的分离倾向。图614a是有两个定态不动点的相图,而图614b描述了定态不动点的最大几率分布。
图615a,b表示,两群体中存在的是中等程度的聚集倾向和强烈的对称相互作用。图615a示意的是一个涡旋图像,而图615b相应于极大值的几率分布。图616a,b相应于某种无休止的迁移过程,每一群体都有强烈的聚集倾向,两群体间有强烈的不对称的相互作用。图616a的相图显示了有不稳定起源的极限环。图616b中稳恒几率分布有4个极大值,它们与顺着极限环的边相连接。在社会学上,这种情况被解释为由不对你的侵入和群体迁移引起的逐步侵蚀。
如果我们考虑在三个区域中的三个群体而不是考虑两个群体,那么非线性迁移模型中就会出现确定论混沌现象。一些数字模拟得到了最后轨迹状态是奇怪吸引子。在其他情况下,相继出现的分叉变得越来越复杂,最终转移到混沌态。
应用于管理和组织社会学领域,是复杂系统探究方式的另一类实际应用。实际上,现代的公司已经开始将其大型组织重组和分散化,以使其在问题复杂性不断增加的情况下成功地实现组织战略。例如,他们开始支持新方式的组织流动性,允许迅速地形成以项目为中心的团体,以及按照环境的需要进行重新组合。与采取固定的社会结构组织形式相比较,流动性组织采取的是一种较高水平的合作方式。面临着社会的两难问题,流动性组织显示了一种极其多种多样的复杂的合作行为,这是由个体战略和结构变化之间的非线性相互作用引起的。
这些社会群体的动力学可以按照复杂系统来建模。计算机模拟对于可能的行为发展方式提供总体的洞察,由此有助于管理者去实现发展的适当条件。即使复杂系统的模型是适用的,当然也不可能作出长期预测并通过集中式的领导来进行全面控制。
这种模型是由意向性动因组成的。它们的选择决定于个体的偏爱c期待c信念以及过去的不完整的知识。合作模式是从个体在一定临界值内进行选择所导致的。当群体中一部分领悟到进行合作超过一定临界值时,个体也将采取合作。临界值取决于群体的大小,也取决于从个体的相互关联模式中形成的社会组织的结构。如果允许群体改变其社会结构,就增加了以合作方式来解决社会两难问题的潜力。组织流动性有其优点,但必须与可能丢失效率进行均衡。组织的效率,可以用它在一定时间中获得的总体收益来测量。
在公司中,一般都存在着某种非正式结构和正式结构,非正式结构是人们之间的情感联系模式导致的,正式结构则是由等级组织支配的。非正式结构通过一种自组织过程而实现,它可以用社会中的人际关系结构来代表。这种研究方式可以追溯到20世纪50年代对于城市家庭的社会关系网的研究,现在已发展成为一种高级的计算机辅助的社会学工具。从个体相互关联的微观角度看问题,就形成了一种对于社会结构的全局透视。
图617和图618中,这些结构被形象化为树状结构。每一分支代表着等级组织中较高水平上的一个子部门。在较低水平上的模式代表了个体,它们造成合作因素的完整循环和造成缺陷的开放循环。把两个个体分开的组织层的数目,是由每一个体从树状结构返溯到其共同时的模式数目所决定的。组织中两个单元之间的距离,由隔开的组织层数来度量。两个单元之间的距离越远,它们的行动之间的相互影响就越小。因此,组织树说明了一个群体中的集束数量和程度。
关键性的问题是一个群体的结构和流动性将如何影响合作的动力学。流动性依赖于个体在社会中的移动的难易程度,以及他们是否容易取得成功并扩展到结构。在复杂系统的框架中,系统的宏观性质是从下层的组分的相互作用中衍生出来的,这里在数学上用非线性演化方程来建模。
格兰斯和休伯曼在图617a-d中示意了对一个固定的社会结构中某些相转移的计算机模拟,其中由3个大集束构成了3层次的等级,每一个大集束又是由3个3元素的子集束构成的。图617d中的最终的总合作是由图617a中若干个单元的集束行动所导致的。这些单元相互加强,同时又能够推动一个层次上的单元进一步加入到合作之中。这种合作的增加可以影响结构中单元的合作,甚至可以进一步加入到合作之中。
在一个等级结构中的某个微小的合作行动,就可能引起大范围地转向整个组织的合作。这种一连串增加的合作将导致某个不动的平衡点。但是,具有固定结构的群体容易成长起来并超出持续合作的界限。在这种情况下,群体将迅速演化到它的总偏离的平衡状态。但是即使在这种界限以内,合作模式也是亚稳的,即单元之间的合作不可能长期保持,终归会过渡到发生突然的对称破缺,出现总的偏离。
在流动结构中,个体单元可以在组织中移动。个体根据他们所期待的长期利益而作出合作或偏离的决策。为了评价他或她在结构中的地位,他或她将把长期报酬与期望值进行比较,如果合乎他或她的期望,他或她就会呆下去,如果不合乎就会离开,离开的选择是随机的。当个体评价他或她的地位时,还会考虑突破现状而形成某种新集束的可能性,如果他或她感到这样做并不导致任何损失的话。个体单元是否容易取得突破,决定了取得突破的临界值,它是未来最大可能报酬的某个分数。
图618a-e粗略显示了一个流动组织中的相变。最初图619a,群体中的所有成员按每束4人划分为4束,都是处于偏离中。图618b表明,几乎其中所有的成员都已经依靠自己取得了突破。在这种情况下,成员们更倾向于转向某种合作的策略,实现了图618c。因为不确定性,成员中不时有集束之间的切换图618d。当一束变得太大时,该束就可能开始转向偏离。在这一转移阶段图618e,越来越多的成员将取得自己的突破,并重复出现类似的发展。这种类型的循环已经在模拟的组织中反复观察到了。
正如在城市生长的情形图611或者迁移动力学中图613图616,对社会组织的计算机实验模拟不可能对个体行为得出确定论的预测,但是它们有助于人们理解社会动力学的敏感性和复杂性。因此,就有可能去实现适宜的环境和条件,从而改进相应社会系统中的人们的生活状况。
社会文化进化的模型必须考虑到多个相互作用的方面。如果一个社会是由多层c多部门交叉的耗散结构构成的,我们就必须找到合适的图像去说明它们是如何形成的。在包含相互作用的耗散系统的复杂发展中,新的宏观结构的形成从长期角度看就是一种分散化和非计划事件。而且,在每一方面都包含着许多或明或暗的激励和鼓舞着人的行为的思想c感情和预计。它们无法直接地加以量化,因为它们溶解在一条被称作“生活方式”的洪流之中。然而,一个社会的生活方式是一种典型的社会文化的宏观现象,依赖于多种相互作用的可以鉴明的因素:诸如与经济c技术c工作c旅行c生态和传播媒介相联系的条件状况。
当代世界中,技术的进化已成为一种变化的推动力量,影响着多种多样的生活方式要素。对于自组织过程,一种显著的特征是,技术的发展是自催化的,每一种创新都催化下一种创新的产生。一种主导的思想“范式”是把技术和社会进化解释为技术相继被取代的结果,即一种人工物被另一种人工物取代,照此从增长到饱和的发展就可以进行数学建模,表示为相互关联的逻辑斯蒂曲线。断言技术的进展是通过一系列的相变和取代而进行的,意味着它们可以看成一系列相继的逻辑斯蒂曲线。每一条曲线都达到了某种饱和水平。随着每一水平的进化创新,就发展起一条新的逻辑曲线的相变。
在63节中,我们已经讨论了技术中的这些相变是与经济的增长或衰退相关联的。计算机和信息技术的发展已经前所未有地影响了几乎所有领域中的人类生活方式。看来可以将其比作一种准进化过程,即产生出复杂性不断增长的计算机和信息系统的过程。当计算机科学家们谈论新一代计算机超越了老一代计算机的复杂性时,就运用着赫伯特斯宾塞的术语。事实上,系统功能的复杂性已经增加了。但是,另一方面,例如,问题的复杂性由其所用计算时间来度量就已经减少了。问题复杂性的减少就是这些技术的准进化过程的一种序参量。
计算机和信息技术系统已经成为社会文化发展中的一项至关重要的技术,以准进化过程进化着。这种过程的复制作用具有某种信息模式,它们构成了文化,并以变化着的方式从这一人群传播到另一人群。与分子和初等有机体不同,人们有其自己的意向性,信息模式的传播过程不是通过机械式模仿来实现的,而是通过通信来实现的。将其与基因相比较,这些复制作用常被称作“縻縻”s。它们包括思想c信念c习惯c道德c风尚和技术等等。
任何能够通过信息通信方式传播的模式就是一种魔摩,甚至在其人类宿主无法表达它或是没有意识到它的存在时也是如此。重要的是,认识到人类文化的复制子是縻縻,而不是人们。正如卡尔波普尔主张的,我们能够改变我们的思想,使得推动文化进化的不是人们的选择,而是“让我们的理论替我们死亡”。
在复杂系统的框架中,我们当然可以谈论在数学演化方程的抽象意义上的系统“进化”。具有其特殊生物化学机制的生物进化,只是标志了复杂系统的一般数学框架中的特殊模型。因此,人类文化的进化特征,是不可能归结为生物进化的生物化学机制的。但是像“縻縻”这样的概念,不应该被误解为只是一种社会达尔文主义的行话。它们可以说明能够从数学上定义并在经验上检验的复杂系统的基本特征。
在此意义上,世界范围的通信网络的发展,可以被解释为协助人类中的縻縻传播以建立起一种縻縻生态系统的复杂系统的进化。支撑着人类文化的縻縻是多种多样的,也是其变化和选择的机制。在63节,我们已经讨论了“经济縻縻”及其市场选择机制。经济市场对于其自身的人类社会环境总是具有一定程度的开放性。在它们的运行中,总是受到广泛的严格程度不一的种种力量的制约,它们是由各种法律和调控机构所施加的。
在人类社会中,法律系统和政府活动为市场提供了某种框架。在复杂系统的框架中,它们不可能免遭进化力量的冲击。它们在政治生态系统中,以其自身的机制发生着进化,进行着法律的变异和选择。一些政治縻縻,如政治c政治口号或政治纲领,可以成为社会热力学相图中的吸引子。在一个开放的民主社会中,它们可能兴旺,但也可能衰落,如果由于竞争替换的选择压力使得它们的吸引力减小的话。
管理现代社会的复杂性的能力决定性地依赖于有效的通
松语文学免费小说阅读_www.16sy.com
计算机作出的图611a-e示意了一个区域的人口分布的演化,该区域起初没有局域中心之间的相互作用。城市化过程表现为局域吸引子变化的格变。图611b处于时间t=12单位,结构开始围绕5个主要中心发展。图611c中,最大中心的核心部分开始达到极大值。图611d示意t=34,基本结构本质上是稳定的。两个中心已经经历了中心部分的衰退。在图611e中,基本的模式是稳定的。衰退c中心化和非中心化都是复杂的非线性动力学引起的。
图611a-e形成了城市系统的总体演化的加速运动图像。每一幅图像是一特定时间的总动力学状态的一幅相图。当然,这种模型是进行了简化的。但是,可以给它加上更多的功能作用方面,进一步研究其精细的非线性相互作用。不过,这种模型对于探讨决策选择具有启发性,可以在计算机模拟的案例研究中进行分析。无论是局域的还是总体的变化都可以增加到该系统中。这些模拟研究,政府极为感兴趣。
一种可能的策略是,在特定的地点给予特殊的投资以干预城市结构。这种决策策略适用于城市系统中迄今为止欠发展区域的发展。例如,投资不仅仅是一种经济手段,同时也是一种文化吸引力和交通联系。有时,一项投资可以激起某种局部的蝴蝶效应,引出某种总体后果,而与设计者的善良意愿起相反的作用。这是可能的,原因在于模型的非线性限制了长期预测的可能性。
一个城市的动力学是复杂系统的实际例子。它表明,如果忽略了非线性的后果,个别人的良好愿望是不充分的,甚至是危险的。个体行为的集体效应是我们社会的特征。进行决策时,要尽可能地意识到这些集体效应。这些后果的重要性不仅仅出现在对于具体决策及其非线性的计算机模拟中,甚至并没有参与具体的计划活动的公民,也必须意识到社会中的复杂的相互关联性。
煽动人们要求有对一位可以解决所有问题的强有力的政治领袖,从民主观点来看,这不仅仅是危险的。从数学角度看,由于现代高度工业化社会的复杂性,还表明它是错误的。另一方面,我们不要把希望寄托在个别的政治家或党派的身上,也不要当我们的被夸大了的预期未能实现时,又走向完全对政治丧失信心的另一端。人类社会的特征是其中的成员具有意向性。然而,如同原子团c分子混合物c细胞有机体或生态群体一样,他们也是由非线性的复杂性规律所支配的。
社会学理论中,对于复杂性和非线性的认识论考察仍然处于初期。发展起一种能够适当处理社会问题复杂性的统计数学,可以作为通向传统社会学概念的桥梁。在复杂系统探究方式中,社会现象是由非线性方程来描述的。例如,对埃米尔德克海姆谈到的社会中的连带性,我们可以把这种概念的功能方面归因于复杂系统的非线性和集体效应。我们可以把政治决策划分为“线性的”和“非线性的”,例如,“线性的”相应于“个人的”选择,而“非线性的”相应于行政管理c大众媒介和政党这样的组织体制环境。许多公民和组织机构的行动和反应,都可以被理解为社会统计描述中的固有涨落。社会的确定论特征并不仅仅反映了分布函数的平均值,它们是按照如同主方程那样的非线性规律随时间发展的。
沃夫冈维德里希的斯图加特学派已经发展起来了这种对于社会经济动力学的研究方式。其数学建模方法是从协同学和统计物理学中推导出来的,允许对社会中的集体发展进行定量描述。协同学指出了社会中的微观水平上的个体决策与宏观水平上的动力学集体过程之间的一种关系。社会科学中在微观经济学和宏观经济学c微观社会学和宏观社会学之间作出划分是大家熟悉的传统概念。维德里希的协同学探究方式是一种对于宏观过程的几率性描述,其中包括了忽略了涨落的准确定论描述的随机涨落和偏差。
对于求解模型可以从两方面来进行考察,例如,可以用分析的方法,考察主方程或平均方程的近似解的精确性如何;也可以用数字方法或计算机辅助方法来模拟特征图景。通过在微观水平上的实际考察,确定模型的参量或借助模型模拟估计未来的发展,从而对经济系统进行分析c评价。图612中示意了用协同学探究方式对于社会动力学进行建模的方法论框架。
这种协同学的建模概念已经被运用到若干种社会科学的问题中,例如,对于政治见解的集体形成,人口统计学,群体迁移,以及区域地理。协同学概念特别适合于把若干个社会部门的相互作用整合起来,诸如经济和集体形成政治见解之间的关系,或者经济和迁移过程之间的相互作用。迁移是当今一个非常重大的问题,揭示了线性的c单因果的思维是多么的危险。只有善良的个人愿望而没有考虑到个别决策带来的非线性的效果是不够的。线性的思维和行动可能激发总体的混沌,尽管我们的局部行动是出于善良的意愿。
按照协同学探究方式,社会经济系统有两个特征水平,标志着社会中个体决策的微观方面和集体动力学过程的宏观方面。发生着涨落的几率性宏观过程,可由人类社会构型的主方程来描述。一种社会构型的每一组分,都涉及到具有特征行为矢量的亚群体。对于群体的迁移,迁入或离开某个区域的行为和决策,可以从群体的空间分布及其变化来识别。因此,模型的动力学允许我们描述群体的不同总体宏观状态之间的相变。
经验性管理数据可以用来对这个理论进行检验。该模型可以是关于一个国家中的区域迁移,它由经济和城市发展的不同所引起;它甚至也可以是在“南”和“北”之间的惊人的世界性迁移,即在穷国和高度工业化的西欧c美国之间的迁移,这是由政治和经济的不景气所推动的。动物群体的物理输运或迁移常常是不可控制的c随机的和线性的,没有成员和集合体之间的相互作用。但是,人类的迁移则是有意向性的受到收益考虑的驱动c非线性的。因为这种转移率并不线性地依赖于整体的社会构型。
两个人类群体之间的迁移相互作用可能引起若干种协同学宏观现象,比如形成稳定的混合体,形成两个的稳定聚居群体,或者保持着不休止的迁移过程。在迁移动力学的数字模拟和相图中,协同学宏观现象可以通过相应的吸引子识别出来。图613a,b示意了两个群体的均匀混合,两者的聚集或分离的倾向都比较弱。图613a是平均方程的相图,其中有一个稳定的平衡点。图613b示意了主方程的稳恒解以及具极大值的几率分布。图614a,b示意了两个稳定的聚居群体的形成,两群体间显示出弱的聚集倾向和强的分离倾向。图614a是有两个定态不动点的相图,而图614b描述了定态不动点的最大几率分布。
图615a,b表示,两群体中存在的是中等程度的聚集倾向和强烈的对称相互作用。图615a示意的是一个涡旋图像,而图615b相应于极大值的几率分布。图616a,b相应于某种无休止的迁移过程,每一群体都有强烈的聚集倾向,两群体间有强烈的不对称的相互作用。图616a的相图显示了有不稳定起源的极限环。图616b中稳恒几率分布有4个极大值,它们与顺着极限环的边相连接。在社会学上,这种情况被解释为由不对你的侵入和群体迁移引起的逐步侵蚀。
如果我们考虑在三个区域中的三个群体而不是考虑两个群体,那么非线性迁移模型中就会出现确定论混沌现象。一些数字模拟得到了最后轨迹状态是奇怪吸引子。在其他情况下,相继出现的分叉变得越来越复杂,最终转移到混沌态。
应用于管理和组织社会学领域,是复杂系统探究方式的另一类实际应用。实际上,现代的公司已经开始将其大型组织重组和分散化,以使其在问题复杂性不断增加的情况下成功地实现组织战略。例如,他们开始支持新方式的组织流动性,允许迅速地形成以项目为中心的团体,以及按照环境的需要进行重新组合。与采取固定的社会结构组织形式相比较,流动性组织采取的是一种较高水平的合作方式。面临着社会的两难问题,流动性组织显示了一种极其多种多样的复杂的合作行为,这是由个体战略和结构变化之间的非线性相互作用引起的。
这些社会群体的动力学可以按照复杂系统来建模。计算机模拟对于可能的行为发展方式提供总体的洞察,由此有助于管理者去实现发展的适当条件。即使复杂系统的模型是适用的,当然也不可能作出长期预测并通过集中式的领导来进行全面控制。
这种模型是由意向性动因组成的。它们的选择决定于个体的偏爱c期待c信念以及过去的不完整的知识。合作模式是从个体在一定临界值内进行选择所导致的。当群体中一部分领悟到进行合作超过一定临界值时,个体也将采取合作。临界值取决于群体的大小,也取决于从个体的相互关联模式中形成的社会组织的结构。如果允许群体改变其社会结构,就增加了以合作方式来解决社会两难问题的潜力。组织流动性有其优点,但必须与可能丢失效率进行均衡。组织的效率,可以用它在一定时间中获得的总体收益来测量。
在公司中,一般都存在着某种非正式结构和正式结构,非正式结构是人们之间的情感联系模式导致的,正式结构则是由等级组织支配的。非正式结构通过一种自组织过程而实现,它可以用社会中的人际关系结构来代表。这种研究方式可以追溯到20世纪50年代对于城市家庭的社会关系网的研究,现在已发展成为一种高级的计算机辅助的社会学工具。从个体相互关联的微观角度看问题,就形成了一种对于社会结构的全局透视。
图617和图618中,这些结构被形象化为树状结构。每一分支代表着等级组织中较高水平上的一个子部门。在较低水平上的模式代表了个体,它们造成合作因素的完整循环和造成缺陷的开放循环。把两个个体分开的组织层的数目,是由每一个体从树状结构返溯到其共同时的模式数目所决定的。组织中两个单元之间的距离,由隔开的组织层数来度量。两个单元之间的距离越远,它们的行动之间的相互影响就越小。因此,组织树说明了一个群体中的集束数量和程度。
关键性的问题是一个群体的结构和流动性将如何影响合作的动力学。流动性依赖于个体在社会中的移动的难易程度,以及他们是否容易取得成功并扩展到结构。在复杂系统的框架中,系统的宏观性质是从下层的组分的相互作用中衍生出来的,这里在数学上用非线性演化方程来建模。
格兰斯和休伯曼在图617a-d中示意了对一个固定的社会结构中某些相转移的计算机模拟,其中由3个大集束构成了3层次的等级,每一个大集束又是由3个3元素的子集束构成的。图617d中的最终的总合作是由图617a中若干个单元的集束行动所导致的。这些单元相互加强,同时又能够推动一个层次上的单元进一步加入到合作之中。这种合作的增加可以影响结构中单元的合作,甚至可以进一步加入到合作之中。
在一个等级结构中的某个微小的合作行动,就可能引起大范围地转向整个组织的合作。这种一连串增加的合作将导致某个不动的平衡点。但是,具有固定结构的群体容易成长起来并超出持续合作的界限。在这种情况下,群体将迅速演化到它的总偏离的平衡状态。但是即使在这种界限以内,合作模式也是亚稳的,即单元之间的合作不可能长期保持,终归会过渡到发生突然的对称破缺,出现总的偏离。
在流动结构中,个体单元可以在组织中移动。个体根据他们所期待的长期利益而作出合作或偏离的决策。为了评价他或她在结构中的地位,他或她将把长期报酬与期望值进行比较,如果合乎他或她的期望,他或她就会呆下去,如果不合乎就会离开,离开的选择是随机的。当个体评价他或她的地位时,还会考虑突破现状而形成某种新集束的可能性,如果他或她感到这样做并不导致任何损失的话。个体单元是否容易取得突破,决定了取得突破的临界值,它是未来最大可能报酬的某个分数。
图618a-e粗略显示了一个流动组织中的相变。最初图619a,群体中的所有成员按每束4人划分为4束,都是处于偏离中。图618b表明,几乎其中所有的成员都已经依靠自己取得了突破。在这种情况下,成员们更倾向于转向某种合作的策略,实现了图618c。因为不确定性,成员中不时有集束之间的切换图618d。当一束变得太大时,该束就可能开始转向偏离。在这一转移阶段图618e,越来越多的成员将取得自己的突破,并重复出现类似的发展。这种类型的循环已经在模拟的组织中反复观察到了。
正如在城市生长的情形图611或者迁移动力学中图613图616,对社会组织的计算机实验模拟不可能对个体行为得出确定论的预测,但是它们有助于人们理解社会动力学的敏感性和复杂性。因此,就有可能去实现适宜的环境和条件,从而改进相应社会系统中的人们的生活状况。
社会文化进化的模型必须考虑到多个相互作用的方面。如果一个社会是由多层c多部门交叉的耗散结构构成的,我们就必须找到合适的图像去说明它们是如何形成的。在包含相互作用的耗散系统的复杂发展中,新的宏观结构的形成从长期角度看就是一种分散化和非计划事件。而且,在每一方面都包含着许多或明或暗的激励和鼓舞着人的行为的思想c感情和预计。它们无法直接地加以量化,因为它们溶解在一条被称作“生活方式”的洪流之中。然而,一个社会的生活方式是一种典型的社会文化的宏观现象,依赖于多种相互作用的可以鉴明的因素:诸如与经济c技术c工作c旅行c生态和传播媒介相联系的条件状况。
当代世界中,技术的进化已成为一种变化的推动力量,影响着多种多样的生活方式要素。对于自组织过程,一种显著的特征是,技术的发展是自催化的,每一种创新都催化下一种创新的产生。一种主导的思想“范式”是把技术和社会进化解释为技术相继被取代的结果,即一种人工物被另一种人工物取代,照此从增长到饱和的发展就可以进行数学建模,表示为相互关联的逻辑斯蒂曲线。断言技术的进展是通过一系列的相变和取代而进行的,意味着它们可以看成一系列相继的逻辑斯蒂曲线。每一条曲线都达到了某种饱和水平。随着每一水平的进化创新,就发展起一条新的逻辑曲线的相变。
在63节中,我们已经讨论了技术中的这些相变是与经济的增长或衰退相关联的。计算机和信息技术的发展已经前所未有地影响了几乎所有领域中的人类生活方式。看来可以将其比作一种准进化过程,即产生出复杂性不断增长的计算机和信息系统的过程。当计算机科学家们谈论新一代计算机超越了老一代计算机的复杂性时,就运用着赫伯特斯宾塞的术语。事实上,系统功能的复杂性已经增加了。但是,另一方面,例如,问题的复杂性由其所用计算时间来度量就已经减少了。问题复杂性的减少就是这些技术的准进化过程的一种序参量。
计算机和信息技术系统已经成为社会文化发展中的一项至关重要的技术,以准进化过程进化着。这种过程的复制作用具有某种信息模式,它们构成了文化,并以变化着的方式从这一人群传播到另一人群。与分子和初等有机体不同,人们有其自己的意向性,信息模式的传播过程不是通过机械式模仿来实现的,而是通过通信来实现的。将其与基因相比较,这些复制作用常被称作“縻縻”s。它们包括思想c信念c习惯c道德c风尚和技术等等。
任何能够通过信息通信方式传播的模式就是一种魔摩,甚至在其人类宿主无法表达它或是没有意识到它的存在时也是如此。重要的是,认识到人类文化的复制子是縻縻,而不是人们。正如卡尔波普尔主张的,我们能够改变我们的思想,使得推动文化进化的不是人们的选择,而是“让我们的理论替我们死亡”。
在复杂系统的框架中,我们当然可以谈论在数学演化方程的抽象意义上的系统“进化”。具有其特殊生物化学机制的生物进化,只是标志了复杂系统的一般数学框架中的特殊模型。因此,人类文化的进化特征,是不可能归结为生物进化的生物化学机制的。但是像“縻縻”这样的概念,不应该被误解为只是一种社会达尔文主义的行话。它们可以说明能够从数学上定义并在经验上检验的复杂系统的基本特征。
在此意义上,世界范围的通信网络的发展,可以被解释为协助人类中的縻縻传播以建立起一种縻縻生态系统的复杂系统的进化。支撑着人类文化的縻縻是多种多样的,也是其变化和选择的机制。在63节,我们已经讨论了“经济縻縻”及其市场选择机制。经济市场对于其自身的人类社会环境总是具有一定程度的开放性。在它们的运行中,总是受到广泛的严格程度不一的种种力量的制约,它们是由各种法律和调控机构所施加的。
在人类社会中,法律系统和政府活动为市场提供了某种框架。在复杂系统的框架中,它们不可能免遭进化力量的冲击。它们在政治生态系统中,以其自身的机制发生着进化,进行着法律的变异和选择。一些政治縻縻,如政治c政治口号或政治纲领,可以成为社会热力学相图中的吸引子。在一个开放的民主社会中,它们可能兴旺,但也可能衰落,如果由于竞争替换的选择压力使得它们的吸引力减小的话。
管理现代社会的复杂性的能力决定性地依赖于有效的通
松语文学免费小说阅读_www.16sy.com