当前位置:松语文学 > 穿越小说 >复杂性中的思维物质最新章节 > 复杂性中的思维物质TXT下载
错误举报

正文 第30节

  友好和有效率,以适用于预测专家,也适合于新手。然而,我们决不要忘记,sibyl只可能优化所存贮的预测方法。原则上,预测方法的预测水平,不可能由使用计算机而得到放大。与人的专家具有学习能力相反,如sibyl这样的预测系统仍然是程序控制的,具有基于知识系统的典型局限性。

  一般说来,基于计算机的预测自动机是遵循线性思维路线的。另一方面,现代计算机的能力不断增加,鼓舞着研究人员去分析非线性问题。在20世纪50年代中叶,气象学家偏向于使用基于线性回归概念的统计预测方法。这种发展,得到了诺什维纳对于稳恒随机过程的成功预测的支持。爱德华洛仑兹对这种统计预测思想产生了怀疑,并决定对比非线性动力学模型从实验上来检测其有效性参见24节。天气和气候是一个有能量耗散的开放系统的例子。为这种系统建立的模型中,用相空间的点表示其状态,用轨迹来表示其行为。经过一定时间后,轨迹就达到了某个吸引集“吸引子”,这可以是此系统的某个稳定的点图214a或图311某个周期振荡,叫做极限环图311b或奇怪吸引子图221。如果人们希望预见包含某个稳定点或极限环的系统的行为,人们可以观察到附近的轨迹会发散,不会生长,甚至会消失图72。在这种情形下,整体的起始条件将达到定态,相应的系统也就是可预测的。一个例子是,用非线性的洛特卡沃尔特拉方程建模的生态系统,捕食和被捕食群体具有周期轨迹。附近轨迹的发散和收敛,可以用所谓的李亚普诺夫指数进行数值度量:

  我们考虑时刻t=0起始条件为x0和x0的两条邻近的轨迹xt和xt,矢量dt的长度dt=xt-xt。如果轨迹收敛,那么dteΛt且Λc0。量Λ叫做李亚普诺夫指数,定义为

  Λx0,d0=[1tlndt0]

  如果其值为正,李亚普诺夫指数就给出了收敛速率。在图72中模型过程xt对真实过程xt提供了可靠的预测,因为假定此系统具有依赖于其起始条件的收敛轨迹。

  一个非线性系统的相图,可以具有若干吸引子,分别是不同轨迹趋向的区域“分区”参见图210。对于预测演化系统的未来,知道了所有的吸引子及其起始条件x0还是不够的。如果系统的初始状态正好是远离一定吸引盆的,那么相应的吸引子终态是不可预测的。

  在图222a-c中,非线性的逻辑斯蒂映射描述了随控制参量的不断增加发生的从有序向混沌的转移。图223a,b描述了相应的超过一定临界值而出现的混沌区的分叉序列。如果相应的李亚普诺夫指数为正,那么系统的行为是混沌的。如果它为零,那么系统倾向于分叉。如果它为负,那么系统就处于稳定态或分叉树上的一支。在这种情形中,系统是可预测的。在其他情形中,对起始条件的敏感性就开始出现。显著之处在于,在混沌区的非线性系统决非意味着完全不可预测。在混沌未来的灰色区中的白条或“窗口”图223b,显示了具有负的李亚普诺夫指数的局域有序状态。因此,在混沌的海洋中,我们可以找到可预测的有序岛。在这种情形下,至少对于短的特征时间间隔系统是可预测的。

  一般来说,可预测程度的度量使用的是开始观察后的特定时刻的观察过程和模型之间的统计相关。接近一致的值相应于满意的预测,而小的值表明了观察和预测之间存在差距。所有预测模型都有一定的可预测行为的时间,超过了以后可预测性会减少,以不同速度趋向零。对于模型的改进可能使预测行为的时间有某种程度的扩展。但是,可预测的范围依赖于涨落参量。局域不稳定混沌系统中弱的微观扰动可以在短时间中达到宏观规模。因此,局域的不稳定性惊人地减少着对预测行为的改进。预测系统的预测水平,既不可能通过改进测量仪器也不可能通过精致预测模型来改进。当我们记起洛仑兹的大气模型,使用的是具有局域的和全局稳定性的非线性系统,我们就会意识到气象学家在获取有效的长期或甚至中期预测中遇到的困难。通过不断增加的计算机的能力,天气预报就会直线地进步,这是20世纪50年代的一种幻想。

  随着非线性的模型运用于不同的研究领域,我们获得了对于振荡化学反应,物种c群体的涨落,流体湍流和经济过程的一般性洞察。例如,太阳黑子的形成,以前用时间序列的统计方法进行分析,它决非是一种杂乱的活动。它可以用非线性混沌系统来建模,具有几种特征的周期和奇怪吸引子,对其活动的预测是有限的。例如,在公共舆论形成的非线性模型中,我们可以区分出选举“分叉”前的可预测的稳定态与向稳定多数的转变,选举前两种可能的意见都没有受到偏爱,而不可预测的微小涨落却可能在很短的分叉间隔中引起突然的转变。这种情形使我们想起在沸腾水中气泡的形成:当一个气泡变得充分大时,它以其向上的方式稳定地生长是可预测的。但是,它的出现和初期的生长却是一种随机涨落问题。显然,非线性建模解释了现代民意测验中毕希娅们和西彼尔们的困难。

  今天,非线性预测模型并不总能够提供比标准线性程序更好的c更有效的预测。它们的主要优点在于,对真实过程中的实际的非线性动力学的解释,对局域的短期预测水平的证实和改进。但是,为了通过求解方程而预测未来的行为,首先要构造起支配了时间t的观测的适当动力学方程。甚至在自然科学中,对于如地震那样的复杂领域的适当的方程是否能够推导出来也还不清楚。我们可以希望在计算机的存贮中放入一张典型的非线性方程的表,在观察过程中系数可以自动地得到调节。与对所有可能的相关参量进行穷竭式搜索的做法相反,学习式策略可以从粗略的模型出发,只经过一段相对短的时间的运行,就可以说明相对窄的值域中的少量参量。通过神经网络的学习策略,已经实现了对于短期预测的改进。以学习数据为基础,神经网络通过自组织程序可以权衡输入数据,并减少对短期股票行情的预测误差图522a,b。若只有一部分股票市场的顾问使用这种技术支持,他们会做得很好。但是如果股票市场上的所有代理人都使用同样的学习策略,那么预测就将成为某种自欺欺人的预言。

  原因在于,人类社会不是分子或蚂蚁的复杂系统,而是具有高度意向性行动的存在物,具有或多或少的自由意志。一个特殊的自我实现的预言是俄狄浦斯效应。在此人们如同那个传说中的古希腊国王一样徒劳地试图改变他们的被预测的命运。从宏观的观点看,我们当然可以观察到一个个的个体以其自己的活动,对于代表看文化c政治和经济秩序“序参量”的社会的集体宏观态有贡献。然而,社会的宏观态当然并非只是对其所有部分的平均。它的序参量,以定向“役使”其活动c激发或抑制其态度和能力,强烈地影响着社会中的个体。这种反馈在复杂动力系统中是典型的。如果由于内部或外部的相互作用,环境条件的控制参量达到了某种临界值,宏观变量就可能运动到某种不稳定区域,在此高度发散的多种可能途径成为可能。微小的不可预测的微观涨落例如为数很少的有影响人物c科学发现c新的技术,就可能决定了社会将在分叉处不稳定态的发散途径中取得何种途径。

  72复杂性c科学和技术

  尽管存在上述困难,我们仍然需要对于局部和全球的短期。中期和长期预测的可靠支持。从政治角度上看,一个最新要求是为科学和技术的未来发展建立模型,因为科学和技术已经成为现代文明中的一个关键性因素。实际上,这种发展似乎是在受科学思想和研究群体的复杂动力学支配,科学思想和科学群体是嵌在复杂的人类社会之网中的。研究群体的共同主题,长时期或短时期地吸引着研究人员的兴趣和能力。这些研究的“吸引子”,表现为支配科学家的活动,如同流体动力学中的吸引子和涡旋。当研究状态变得不稳定时,研究群体可能分解成追求特殊研究途径的小群体,它们可能会以获得答案而告结束,或可能再度分叉,如此等等。科学的动力学表现为由其复杂性不断增加的分叉树中的相变来实现。有时,科学问题得到了明确定义,并导致清楚的解答。但是,也有“奇怪的”和“扩散的”状态,如同混沌理论中的奇怪吸引子。

  历史上,对科学成长的定量探索始于统计方式,如雷诺夫关于“18世纪和19世纪的西欧物理学发展中创造性的波型涨落”1929的工作。罗伯特默顿从社会学观点讨论了“科学和技术中兴趣中心的变化”,皮特里姆索罗金分析了15世纪以来科学发现和技术发明的指数增长。他强调,发明或发现的重要性并不取决于主观的判断,而是取决于由基本创新引起的相继科学工作的数量。早在1912年,阿弗雷得洛特卡已经设想,借助于微分方程来描述诸如疟疾和化学振荡的传播的真正流通过程。在一篇1926年的文章中科学产量的频率分布,他运用了关于科学思想传播的流行模型。首先是有一个“感染思想”中心,它以流行型波的形式感染了越来越多的人。因此,从认识论的观点看,科学领域的积累和集中就使用所谓的洛特卡分布和布拉特福特分布来建模,此模型开始于某些个体作者的若干篇文章,它们成为出版物群的核心。流行模型还应用于技术创新的传播。在所有这些例子中,我们发现了众所周知的逻辑映射的s曲线图222a,即开始较慢,随后是指数增长,最后又是慢增长到饱和。显然,学习过程也是用s曲线的3阶段来描述的,即个体最初的成功学习较慢,然后是迅速的指数的增长,最后又是缓慢的趋近于饱和的阶段。

  从统计分析转向动力学模型具有重大的方法论优点,即难以理解的现象如科学活动中的奇怪涨落或统计相关,都可以在计算机辅助的模拟实验中获得动态变化的图景。流行模型和洛特卡沃尔特拉方程只是模拟科学共同体的耦合生长过程的最初尝试。不过,进化过程的基本性质如创造出新的结构要素突变c创新等等,还没有得到反映。社会系统中的进化过程的描述,必须要包括不稳定的相变,新思想c新研究领域和新技术如经济模型中的新产品藉此取代掉已有东西,从而改变了科学系统的结构。在对艾根的前生物进化方程参见33节的推广中,科学系统的描述使用了一组可分清其数目的领域即科学研究领域的子领域,其中每一领域都以一些占据的元素为标志即科学家在特定的子领域中的工作。自复制c衰退c交换和从外部来源的输入或自发发生等基本过程,都必须要建立模型。每一自复制或死亡过程,都仅仅改变某一个领域的占据状况。对于简单的无交换的线性自复制过程,一个领域的选择价值由该领域的“诞生”率和“死亡”率之差给出。当一个新的领域开始被占据,正是其选择价值决定了此系统对于此创新是否稳定。如果其选择价值大于任何此领域中的其他任何选择价值,新领域的生长就将超过其他领域,系统可能会变得不稳定。具有较高选择价值的新领域的进化,标志了一种简单的选择过程,它遵循达尔文的“适者生存”。

  但是我们决不要忘记,这种数学模型并不意味着把科学活动还原为生物机制。进化方程的变量和常数并不涉及生物化学量及其测量,而是科学计量学的统计表。自复制对应于新的科学家加入到他所希望从事的研究领域之中。他们的选择受到教育过程c社会需求c个体兴趣c科学学派等等的影响。衰退意味着,科学家只在科学领域中活动有限的年头,科学家可能会因种种原因例如年龄而离开科学系统。领域迁移意味着科学家在科学领域的交换过程,它遵循迁移模型。科学家也许会偏爱具有较大吸引力的领域,此种领域表现为具有较大的自复制率。当过程包括了领域之间的交换,这些领域具有自复制和衰退的非线性生长函数,那么一个创新的选择价值的计算就是相当复杂的数学任务。一般来说,一个具有较高选择价值的新领域,是由系统对于相应扰动的稳定性来标志的。

  实际上,科学的生长是一个随机的过程。例如,仅仅有几个先驱者投身到新领域的初始阶段,就是典型的随机涨落。科学子领域中可能占据密度的随机动力学,用主方程来建模,它使用由自复制c衰退和领域迁移的转移几率定义的转移算符。此随机模型,为科学生长过程的几种计算机辅助模拟提供了基础。相应的确定论曲线,作为对于大量一致的随机系统的平均结果,也被看作是趋势分析。结果,子领域的科学共同体的一般s形状曲线的生长规律,即具有缓慢的起始阶段c迅速生长阶段和炮和阶段,也在一些模拟中得到了证实。在一系列的模拟中图73,假定了一个研究领域大约有120160个成员。对于5个领域,选取了100个科学家作为起始条件,此起始条件紧接饱和领域。第6个领域还没有建立起来其起始条件中成员为零。在第一个例子中,已经对若干种情形,模拟了自复制过程对新领域生长曲线的影响。随着自复制率的增加,新领域以邻近领域为代价,增长得更加迅速。

  新领域的形成可能会有更加共存或更加选择的趋势。起始阶段的生长可能会或多或少快一些,或者也可能被延缓。科学史上一个生长被延缓的著名例子是混沌理论本身,它在起始阶段只受到非常少的科学家的注意例如彭加勒。尽管新领域的数学原理是相当清楚的,但是其指数增长是前些年当计算技术可以处理非线性方程时才刚刚开始。有时,一个形成中的领域不可能成长为一个真正的科学领域,因为它与众多的环境领域相比仅仅具有弱的选择优势。遗憾的是,有些技术领域如能源的替换例如风能c太阳能,就仍然处于这种可怜状态,它们被强大的传统的或核的能源工业所包围。如果一个新的有吸引力的领域出现了,就可以看到科学家从周围领域争相进来的现象。这些人们正在适应新领域的风格和问题求解模式。这种直接的领域迁移,有时导致了科学中的时髦现象。

  众所周知,如果适当控制参量的增加使之超过一定的临界值,s形状的非线性逻辑映射就会产生出种种复杂动力学行为,如不动点c振荡c确定论混沌图222。显然,随机论模型和确定论模型都反映了科学生长的某些典型性质。这些效应是新领域的结构分化c缺省c创造c扩展,伴随着缓慢c消失c迅速生长c过度时髦和消退。对这些动力学效应的计算机辅助作图模拟中,可以用适当的序参量来标志,序参量能以科学计算数据为基础进行检验。在种种条件下的可能图景可以进行模拟,从而去预测未来发展的里程碑和领域。

  但是迄今为止,对科学研究领域进化的建模,仅仅考虑了所选择的领域中科学人力的变化。科学生长的更合适的表示,必须要考虑到科学努力中的问题求解过程。但是,要找到一个合适的态空间来表示科学领域中问题求解的发展,是一个困难的方法论问题。在生物进化的数学理论中,物种只能用高维生物特征空间的点来表示图34。一种物种的演化相应于一个点通过表现型特征空间的移动。类似地,在科学系统中,也必须建立起科学问题的高维特征空间。科学文章的构型以引证数量中的多维尺度技术进行分析,用二维或三维空间的点来表示。研究问题常常用关键词“宏观术语”的序列来表示,关键词根据它们在科学叙述中出现或共同出现的频率来选取。

  在连续的进化模型中,问题空间的每一点都用相应于所研究问题的矢量来描述图74a。问题空间由科学领域的所有科学问题构成,其中一些可能是未知的和还没有进入研究之中的。这种空间是距离空间,因为两点之间的距离相应于所表示的问题之间的主题关联程度。时刻t工作于问题q的科学家自身在问题空间的分布密度为xq,t。在此连续模型中,xq,tdq指的是在时刻t工作于“问题元”dq的科学家人数图74b。

  因此,此研究领域可能相应于问题空间中种种关联点的密度云。在这些较大密度区域之间的单个点,相应于科学家工作于的研究问题,它们可能代表了可能的新研究领域的核心。科学史表明,一组研究问题成长为一个研究领域可能要花上数十年之久。在此连续模型中,领域的迁移过程以密度变化来反映:如果一位科学家从问题q变化到问题q,则密度xq,t将变小,xq,t将增加。科学家在问题空间的运动,用一定的生产输运方程来建模。函数aq表示,在领域q中科学家通过自复制和衰退而生长的人数变化率。因此,它是一个在问题空间具有多个极大值和极小值的函数,表示了科学领域中的吸引力的增加或减小。类似于物理势能例如图410,人们可以把aq解释为具有山地和低谷的吸引力势能地形,代表着研究领域的吸引子和停滞区图74b。

  知识生长的动力学模型已成为科学计量学上可检验的。因此,它们可能在科学哲学及其科学生长概念c科学史及其科学文献评价之间架起桥梁。在认知计量学中,最近进行了一种尝试,对研究问题进行量化,并在由图书计量学的c认知的和社会的特征所构成的适当问题空间中,将它们表示出来。由波普尔c库恩等人提出的简化的科学史模式,就可能用可检验的假说来代替。库恩的具有“常规”科学阶段和“革命”科学阶段的不连续的序列,显然难以解决知识的生长问题。另一方面,某些历史学家的朴素信念,即认为科学的生长是永恒真理的不断增长,无论如何也是不适合于复杂研究动力学的。甚至波普尔的精致了的后期哲学,认为科学并非通过不可归约的已有定律的单极增长,而是通过假说和批判的学习策略而增长,也需要更精确和更明晰的历史地变化着的方法论c体制和组织的标准。现代计算机的计算能力

  松语文学免费小说阅读_www.16sy.com